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Future mission concepts for robotic and human explorations will involve a high level of 
real time control/monitoring operations such as tele-operation for spacecraft rendezvous and 
surface mobile platforms carrying life-support equipments. The timely dissemination of 
voice, command, and real-time telemetry for monitoring and coordination purposes is 
critical for mission success. It is envisioned that future missions will require a network 
infrastructure capable of supporting isochronous data services. The CCSDS Proximity-1 
Space Link Protocol1 could be used to carry isochronous traffic. This paper we will focus on 
the data link layer portion of the Proximity-1 protocol specification and analyze its jitter and 
performance for supporting isochronous applications. In particular we will focus on 
constrained scenarios where the protocol operates in full-duplex mode, carrying isochronous 
traffic in one direction and error-controlled traffic in the other direction. We analyze the 
impact of the strict priority scheme in Proximity-1 used to arbitrate channel access on the 
latency jitter of the isochronous traffic and the efficiency of the reliable data transfer. In 
general, jitter performance is driven by the loading of the acknowledgement traffic on the 
forward link. Under light loading condition, the upper-bound of the delay jitter is the 
transmission duration of an acknowledgement frame on the forward link; for higher loading 
scenarios, the maximum jitter is scaled up by the inverse of the residual bandwidth, i.e., the 
spare capacity available in the forward link after accounting for the acknowledgement 
traffic. We derive analytical expression on the maximum jitter and discuss its performance. 

Nomenclature 
ACK = acknowledgement for automatic repeat request 
ARQ = automatic repeat request 
CCSDS = Consultative Committee for Space Data System
COP-P = Command Operation Procedure – Proximity 
EVA = Extravehicular Activity
FEC = Forward Error Correction 
FIFO = First-In First-Out 
Forward link = typically indicates out-going transmission from Earth to remote space assets; when using an 
orbiter for relay communications, the orbiter-to-remote spacecraft direction is the forward direction.  
Return link = typically indicates in-coming transmission from remote space asset to Earth; when using an orbiter 
for relay communications, the remote spacecraft-to-orbiter direction is the return direction.  
LSAM = Lunar Surface Access Module 
Need_ACK = Boolean variable indicating need to update ARQ state to the sender 
PLCW = Proximity Link Control Word - the data unit that carries acknowledgement/report of ARQ states 
PLTU = Proximity Link Transmission Unit – carries data frame and the associated synchronization marker and 
parity bits 
TDM = Time Division Multiplexing 
Tdata_frame = transmission time of a PLTU on the forward link (isochronous traffic) 
�data_frame = data frame arrival rate of on the forward link (isochronous traffic) 
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�data = loading of the isochronous traffic normalized to the capacity of the forward link 
�Ack = loading of the acknowledgement traffic normalized to the capacity of the forward link 
Rreturn = data rate of the return link  
Rforward = data rate of the forward link 
NPLTU_ret = number of bits in a return link PLTU 
NPLTU_for = number of bits in a forward link PLTU 
NPLCW = number of bits in a PLCW 
TAck = transmission time of a PLCW on the forward link 
TNeed_Ack = periodicity of the Need_ACK state being set to “True” 
N = the minimum window size of the Proximity-1’s COP-P retransmission procedure that maximize 
efficiency of the ARQ when there are no ACK losses and gaps 
n = size of ACK frame gaps 
�ARQ = throughput of the return link, normalized to the error-free throughput of the ARQ algorithm 
Tround-trip = round-trip time of the proximity-1 space link that incorporates propagation, transmission, coding, and 
process delays 
Tdef(i) = the delay experienced by the i-th ACK frame, from the moment the latest Need_ACK state is set to 
True, as a result of blocking by another ACK frame; when i=1, the delay is due to blocking by a data frame  
Dmax_jitter = the maximum jitter experienced by a data frame as a result of channel access contention with the ACK 
frames  

I. Introduction
HE focus of this study is to analyze the performance of the CCSDS Proximity-1 Space Link Protocol1 when 
carrying isochronous traffic such as voice, video, and command for tele-operations of networked space assets. 

No assumptions were made on the coding, synchronization, or physical layer. In particular, we examine a stressed 
scenario where isochronous traffic were intermixed with Proximity-1 acknowledgement frames generated by the 
reception of reliable data transfer on the reverse direction of the link. Isochronous services may become crucial for 
pre-cursor lunar exploration missions where a critical function is the effective tele-operation of robotic assets. Later 
phases of the exploration campaign may involve astronauts monitoring and controlling of space assets in-situ, while 
reliable data were returned back to the astronaut and mission control through a relay infrastructure. 

T

 The term ‘isochronous’ means “having equal time difference.” Therefore, an isochronous communication system 
is one where the time difference between arrival and departure of any data is a constant. However, one can also 
extend the concept by describing the degree to which a system approximates the ideal isochronous system by 
quantifying the consistency of its latency characteristics, i.e., delay jitter. A ‘deterministic’ communication system 
deploying Time Division Multiple Access (TDMA) has high degree of isochronous property because the variability 
of latency is bounded by its TDMA frame duration. On the other hand, for systems that dynamically share resources 
the variations in latency could be larger, depending on the actual resource sharing mechanism deployed and the 
loading of the system. The CCSDS Proximity-1 protocol is not a deterministic system in the sense that it does not 
designate specific time slots to each type of data and control message, and the purpose of this analysis is to analyze 
the degree to which it can behave as an isochronous system.  
 The delay jitter metric measures the range of variation in the delay of data through the Proximity-1 protocol, but 
it does not imply that the inter-arrival times of successive data unit are necessarily constant. In this study we also 
ignore the queuing delay issue since buffering tends to eliminate the timeliness of real-time data traffic and is rarely 
deployed except at the minimum level necessary by the receiving application for the purpose of codec operation, 
which is not a link layer issue.  

For terrestrial applications, jitter tolerance for toll-quality voice is typically set to about 20 msec. Besides jitter, 
the quality of voice is affected by other latencies due to processing, error correction coding, propagation delay, and 
transmission time of the data over the physical medium. Overall, the ITU-T G.114 recommendation prescribes a 150 
msec one-way end-to-end delay as the maximum tolerable latency for two-way voice conversation before subjective 
experience of users becomes awkward (i.e., talking over each other). We can envision that for lunar exploration, the 
propagation delay between Earth and moon will present an insurmountable latency that requires special procedure 
for orderly conversations between multiple parties, i.e., token passing. However, for low-earth orbit operation and 
proximity communications around lunar and Mars region, the propagation factor is not as stringent and delay jitter 
will remain a key item in the latency budget.  

American Institute of Aeronautics and Astronautics 
2



II. Example Scenarios of Isochronous Services 
 As the CCSDS Proximity-1 Space Link protocol has proven its effectiveness through the success of the Mars 
Exploration Rovers, the concept of relay communication will soon be extended to the arena of human exploration. 
With the envisioned throughput for lunar exploration being very high, relay communications will again be the key to 
keeping the link budget at a reasonable level while meeting the coverage and throughput requirements. With the 
propagation delay between Earth and the Moon at about 1.5 seconds, tele-operation of lunar surface elements is a 
possibility, particularly for the early pre-cursor robotic missions, and isochronous communications between teams of 
Extra Vehicular Activity (EVA) astronaut is also anticipated in difference phases of the mission. In this section we 
provide a few examples of isochronous services arising for tele-operations of robotic platform, but they can also be 
generalized to voice communications. 

In tele-operation, isochronous services is needed on the forward direction (from the controller to the remote asset) 
to ensure responsiveness of the remote assets to control/command. Reliability is typically provided via a 
combination of forward error correction (FEC) and link margin; retransmission is not desired since the latency may 
disrupt the timeliness of the command. In the return (feedback) direction, there could be a mixture of low rate 
motion-imagery, real-time status information, and science telemetry that requires stronger reliability via ARQ. 

Figure 1: Tele-Operation of Lunar Asset 

Figure 1 shows a potential pre-cursor mission scenario where a rover on the lunar surface is tele-operated from 
mission control via a relay orbiter. The relay orbiter improves the forward link capacity as well as providing 
capability of operating on the “far-side” of the moon. Here the Proximity-1 protocol is used over the orbiter-to-rover 
link. The long haul link from Earth to the orbiter could use other CCSDS standards. An extension of the scenario, as 
depicted in Figure 2, may involve additional lunar elements; say an EVA astronaut and a Lunar Surface Access 
Module (LSAM), which are receiving copy-traffic on the rover’s return telemetry for situational awareness. 

Full-duplex

Simplex

Simplex

Full-duplex

Simplex

Simplex

Figure 2: Tele-operation with EVA and LSAM monitoring progress 

As shown in Figure 2, the CCSDS Proximity-1 Space Link protocol is simultaneously transmitting control 
directives to the rover as well as relaying return telemetry to the EVA astronaut and LSAM. The nominal 
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operational scenario for Proximity-1 protocol is point-to-point communication. However, the framing structure 
allows for one-to-many transmission in a Time-Division Multiplexing (TDM) fashion, with the “copied” assets 
operating in a simplex, receive only mode. The transmitting side (the orbiter), can mark each Proximity-1 frame 
with the proper spacecraft ID so that each assets knows which frame to process and which frames to discard. On the 
receiving end, the physical layer handshaking and synchronization is completed between the relay orbiter and the 
rover, while the EVA astronaut and LSAM remain in simplex mode and listen to the orbiter’s data stream and pull 
out frames addressed to them. This requires additional coordination in frequency channel to prevent interference.  

Multiple-Access 
Proximity-1 Operation

Multiple-Access 
Proximity-1 Operation

Figure 3: Over-the-horizon tele-operation over the lunar surface  
(multiple access proximity-1 operation required) 

Figure 3 shows a further variation of the remote tele-operation scenario where the controller is in-situ, in this 
case an EVA astronaut on the surface of the moon. The orbiter and the Proximity-1 protocol provide the over-the-
horizon range extension so that the astronaut can control the rover without line-of-sight. LSAM and mission control 
may both monitor the return telemetry. In this case, the proximity-1 protocol is required to operate in multiple-
access mode, transmitting to and receiving from multiple assets simultaneously. Since this scenario depends on 
extensions/modifications to the current standard, we will not consider it in this study. It should be noted that the 
envisioned usage of Proximity-1 is not limited to the tele-operation scenarios. Support for voice communication may 
also have similar, if not tighter, latency and jitter requirements and similar topology as described above. The choice 
of these particular scenarios are only motivated by their near term applicability to pre-cursor lunar exploration 
missions and serve to motivate this analysis.  

Real-time Data Streams
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- Provides differentiated QoS for individual real-
time traffic streams via mechanisms such as RTP 
and DiffServ

MUX

MUX
Proximity-1 Prioritization & Multiplexing
- Provides differentiated reliability and latency
Performance
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1. Protocol signaling & ACK
2. Isochronous traffic (aggregated) –
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3. Non-real time traffic – sequence-

controlled frames
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ACK Non-real time traffic

Figure 4: Prioritized Data Handling of Real-time Data Streams 

Figure 4 identifies the scope of our analysis. It is anticipated that in reality, many independent streams of 
isochronous data streams are multiplexed over a single link layer. It is assumed that individual data stream maybe 
distinguished and handled by the network and transport layers as traffic classes by Differentiated Services (DiffServ), 
as ‘flows’ by Integrated Service (InteServ),  or by their association with transport layer ‘ports.’ However, below the 
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network layer, the traffic classes, flows, or ports is further aggregated into broader link layer categories, either as 
expedited or sequence-controlled which is distinguished by their reliability and latency characteristics. Therefore, 
the Proximity-1 link layer operates on a single aggregated isochronous traffic stream, while the appropriate 
prioritizations and differentiations for individual application traffic streams are performed by the transport and 
network layer protocols as reflected by the ordering of these data stream within the aggregated isochronous at the 
network-link interface. It is the jitter performance over this aggregated isochronous traffic that is the focus of our 
analysis.

III. Prioritization Mechanism in Proximity-1 
The Proximity-1 protocol is a point-to-point link layer protocol supporting expedited and sequence-controlled 

modes. The sequence-controlled mode has stronger reliability using a Command Operations Procedure – Proximity, 
(COP-P) mechanism, which essentially implements a go-back-n ARQ. The expedited mode is a best effort service in 
terms reliability but with higher priority to access the channel, therefore lower delay. The highest priority however is 
actually given to internal protocol controls such as acknowledgements or directives. The three types of frames, 
directive/acknowledgement, expedited, and sequence-controlled obtain access to the physical channel via a strict 
priority scheduler, as depicted in figure 5. The directive/acknowledgements have the highest priority, expedited has 
second priority, the sequence-controlled frames has the lowest priority to the channel. One does not queue any ACK 
frames, instead, at most a single ACK frame is maintain with the latest information on the current state of the ARQ 
process. 

Strict Priority
Scheduler

COP-P State: BOOL Need_Ack

F T

ACK
Expedited Frame

Sequence-Controlled Frame
Strict Priority

Scheduler

COP-P State: BOOL Need_Ack

F T

ACK
Expedited Frame

Strict Priority
Scheduler

COP-P State: BOOL Need_Ack

F T

ACK
Expedited Frame

Sequence-Controlled Frame

Figure 5: Strict Priority Scheduling in Proximity-1 

 Nominally, isochronous data is carried by the expedited frames for lower latency. When channel is lightly loaded, 
the expedited frames essentially see an open channel with minimal delay introduced by waiting for an on-going 
transmission, either data frame or ACK/directives to finish. The maximum delay is the transmission time (Ttx) of a 
single frame before re-gain access to the channel. Let us for a moment assume that lunar exploration will require 
link capacity on the order of 6Mbps, the average requirement for supporting standard definition motion imagery, 
then the blocking time of the channel is at most 2.7 msec.† which should be adequate for any real-time operation 
where the time constant of the control loop may range from 125msec (Low Earth Orbit) to 3+ seconds, the round-
trip delay between Earth and moon. If sequence-controlled frames are not present on the forward link, the jitter is 
essentially the duration of a single ACK frame, which is 18.6�sec.

Strict Priority
Scheduler

COP-P State: BOOL Need_Ack

F T

Isochronous Traffic
(expedited frames)

1 2 3 4

ack1ack2

In-coming 
sequence-controlled frames

Out-going 
ACK and expedited frames

Strict Priority
Scheduler

COP-P State: BOOL Need_Ack

F T

Isochronous Traffic
(expedited frames)

1 2 3 4

ack1ack2

In-coming 
sequence-controlled frames

Out-going 
ACK and expedited frames

Figure 6: Isochronous traffic sharing the proximity-1 channel with acknowledgement frames  

 The presence of sequence-controlled frame increases the maximum jitter seen by the expedited frame by a 
constant factor since it can only block a freshly arrived expedited frame by at most the transmission time of one data 
frame. Therefore, the more dynamic aspect of the prioritization process only occurs between the expedited traffic 
and the directive/ACK traffic. Figure 6 shows this scenario which will be the focus of our analysis.  
                                                          
† The maximum data frame size, including synchronization marker and FEC parity, is 16440 bits. 
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 Intuitively, one expects the system to behave in the following manner. If the rate of the in-coming sequence-
controlled frames on the opposite direction is low, then the isochronous traffic will experience some but minimal 
channel blocking, especially when the ACK frames are much smaller than regular data frames. As the in-coming 
sequence control frame rate goes up, the ACK rate will increase to the point where the isochronous traffic will be 
blocked by a burst of ACK frames, transmitted in succession due to the time delay created by the contention. In the 
coming section, we will analyze the Proximity-1 protocol jitter performance under such scenario where there is a 
mixture of expedited traffic in one direction and acknowledgement traffic and identify circumstances under which 
mitigation strategies or even modifications to the specification is required. 

IV. Performance of Isochronous Service using Current Proximity-1 Standard 

A. Contention Process between the Data and ACK frames 
 We begin by examining in more details the contention process between expedited data and the acknowledgements. 
For easy of explanation, we refer to the direction of the isochronous traffic and acknowledgement frames as the 
forward link, and in-coming sequence-controlled frames as being carried on the return link. Two types of delays are 
distinguished: blocking and queuing. Blocking delay is the time duration measured from the moment a data frame 
reached the head of the queue, to the moment the frame actually gains access to the channel, i.e., the time instance 
when transmission begins. In this study, we will mostly focus our analysis on the blocking delay. Queuing delay is 
not discussed here since for real-time data buffering is purposely limited to reduce latency. 
 Keeping the strict prioritization scheme in the current Proximity-1 standard, the loading of the ACK traffic on 
the forward link is determined by the transition rate of the “Need_ACK” Boolean variable. The Need_ACK state is 
set to True whenever a change occurs in the state of the ARQ algorithm, and it is reset to False whenever a PLCW, 
the frame that carries the ARQ acknowledgement, is sent over the channel. So the Need_ACK variable, in a nutshell, 
keeps track of whether the latest ARQ state has been conveyed to the other side. Nominally, the rate of ARQ state 
change is driven by the arrival rate of new sequence-controlled frames on the return link (each new data frame, if 
received correctly in sequence, will advance the ARQ window by 1.) If the forward link is dedicated to the 
transmission ACK frames (as shown in Figure 7) and has sufficient capacity, then the departure rate of the ACK 
frames will equal to the arrival rate of data frames. 

TNeed_Ack

time
TACK

TNeed_Ack

time
TACK

time
TACK

Figure 7: ACK Frame Transmissions without Contention  

Let TNeed_Ack be the interval between successive transitions of the Need_ACK variable into the True state and let 
TACK be the transmission time of the ACK frame. 

_
_    ,pltu ret plcw

Need Ack Ack
return forward

N N
T T

R R
� �                                                    (1) 

NPLTU_ret, NPLCW, Rreturn, and Rforward are the size of the data frame of the return link, size of the ACK frame, the 
data rate of the return link and the data rate of the forward link, respectively. The normalized loading, or duty cycle, 
of the ACK traffic is: 

_ _

plcwAck return
ack

Need ACK pltu ret forward

NT R
T N R

� � � �                                                           (2) 
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Whenever an isochronous frame arrives to the head of the queue for transmission, it may encounter blocking 
when there is an on-going transmission. Clearly the larger the data frame size or forward link data rate, the lower the 
duty cycle, or �ack, will be and the channel is more available to carry data traffic in the forward direction. 

time

1 2 3 5

TACK

1

frame arrivals

Need_ACK

2 3

Ack 4 superseded by Ack 5

Need_ACK Need_ACK Need_ACKNeed_ACK

data

ACK

time

1 2 3 5

TACK

1

frame arrivals

Need_ACK

2 3

Ack 4 superseded by Ack 5

Need_ACK Need_ACK Need_ACKNeed_ACK

data

ACK

Figure 8: Contention situations between ACK and data frame 

Figure 8 illustrates various contention situations between the ACK frames and the data frames. The frame #1 
arrived to the head of the queue while an ACK frame is being transmitted, so it is blocked until the ACK frame 
clears the channel, i.e., finished transmissionl. The frame #2 arrives to an available channel, but its transmission time 
extends beyond the time instant when the Need_ACK #3 was triggered, so the ACK frame #3 is blocked until the 
data frame clears the channel. The data frame #3 arrives before Need_ACK #4 is triggered but its transmission time 
extends beyond Need_ACK #5. Because the Proximity-1 specification requires that all acknowledgements should 
sent out only the most up-to-date information regarding the ARQ process, ACK #4 is replaced by ACK#5 will be 
send after the data frame clears the channel. The performance of the data frame transmissions, therefore, depend on 
which type of contention situation is the most dominant, as a function of the loading on the forward link. Let �data
denote the offered load on the forward link isochronous traffic. 

_
_ _ _

pltu for
data data frame data frame data frame

forward

N
T

R
� � �� � � �                                             (3) 

 Tdata_frame and �data_frame are the transmission time of the data frame and the offered rate of the data frame on the 
forward link. Note that 1/Tdata_frame < �data_frame. The stability of the forward link requires that 

_

1 1 plcw return
data ACK

pltu ret forward

N R
N R

� �� 	 � 	                                                           (4) 

The ratio Nplcw/Npltu_ret is the ratio of the ACK frame size to the return link data frame size. If the maximum 
payload size is used, it is approximately 0.0068. The typical return link to forward link data rate ratio, for the Mars 
Exploration Rover and Odyssey orbiter, is about 128kbps to 8kbps, a factor of 16. This means that the normalized 
loading of the forward link data frame should stay below 89% of the forward link bandwidth for MER-Odyssey. To 
keep delay and jitter under control, one should provision some margin in the design to reduce the contention. 

B. Performance under light loading conditions 
We begin by considering what will happen under light loading conditions, i.e., �data << 1 - �ack. Specifically, we 

define light loading to mean that the inter-arrival times between consecutive data frames on the forward link are 
large such that the latency experienced by each data frame is independent. In other words, the contention process for 
any data frame does not create residual effects on the next data frame. Under such condition, we only need to 
examine the impact of one data frame on the system to understand the average behavior over time. 
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1. Jitter
In the worst case scenario, a data frame arrives to the head of the queue just as an ACK frame begins 

transmission. At the end of the ACK frame transmission, the channel will free up because �ack < 1. So the data frame 
can re-gain access. Therefore, the maximum blocking delay jitter under light loading condition is just TACK, which is 
the maximum latency a data frame will experience. Even though the data frame arrival rate is low, the size of the 
data frame may have a significant impact on the ARQ process for the return link. Here we have to consider how 
contention may delay and even create gaps in the ACK frame stream.  

2. Impact on ARQ: Short Data Frame on Forward Link 
If the transmission time Tdata_frame � TNeed_Ack, any data frame transmission cannot overlap two consecutive resets 

of the Need_ACK state. Therefore, no ACK frames will be superseded by later ACKs due to extended blocking, as 
shown in earlier examples, by a data frame. One expects that the throughput of the ARQ process on the return link 
data frame will not be impacted significantly. The effect of the acknowledgement jitter on the ARQ process can be 
neutralized by simply increasing the window size by one, therefore accommodating the maximum jitter without 
triggering unnecessary retransmissions. 

3. Impact on ARQ: Long Data Frame on Forward Link 
However, if the data frame on the forward link is large such that Tdata_frame > n * TNeed_Ack where n is positive 

integer, then each data frame could potentially block n + 1 ACKs, and causing n ACKs to be skipped. Figure 8 
illustrate one such case. In other words, the ACK for data frame #m on the return link will, after some delay, be 
followed by the ACK for data frame #(m+n-1) on the return link. The ARQ algorithm will continue to operate 
correctly under such situation because the protocol recognizes cumulative acknowledgement, i.e., by acknowledging 
frame #m, all frame prior to frame #m are implicitly acknowledged. However, there will be some loss of efficiency 
if the protocol is not configured to take this into account and execute re-transmissions that are not necessary. 

Frame #1
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Frame #n+2

Frame # N+1
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ACK #N+1
ACK #N

Frame #1

Frame #nACK #N

Frame # N

Re-TX
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Figure 9: ARQ with ACK gap n < N 

Under nominal conditions, the window size of the ARQ protocol is set to a specific value N to ensure that before 
frame #N completes transmission the acknowledgement of frame #1 should be received. N is typically selected, 
depending on the round-trip latency, such that the RF channel is kept at its maximum utilization with new frames 
being transmitted continuously without ‘dead air.’ However, N is usually selected under the assumption there is a 
continuous, gap-free reception of acknowledgement frame – a reasonable assumption when forward link is reliable 
and dedicated to carrying ACK frames only. If there is contention between the ACK and data frame, such typical 
selection of N may cause pre-mature re-transmission. 

We define a re-tx period as illustrated in Figure 9 in which we assumed that n � N-1. The period begins when at 
the end of sending frame #N, the sender did not received the expected acknowledgement for frame #1, so it goes 
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into a “progressive retransmission process” by sending frame #1 again assuming that frame #1 to #N were lost. After 
missing n ACKs, ACK for frame #n+1 is finally received by the sender, at which time the sender has just finished 
re-transmitting frame #n and will jump from sending frame #n to #n+2, having received the ACK for frame #n+1. 
The cycle completes when the sender starts the transmission of frame #N+1. All together N-1 frames were re-
transmitted unnecessarily, therefore we have Tre_tx_period = Npltu/Rreturn (N-1).  

One can further extend the analysis to situations where n > N-1. In that case (see Figure 10) when the ACKs 
finally resumed, it will acknowledge frame #N because that is the highest ever observed by the receiver, and the 
sender side will immediately jump right up to transmit frame # N+1, for a total of n duplicate transmissions. 

Frame #1

Frame #N

ACK #0

ACK
skipped n 

times

Frame # N

Frame # N+1 

Frame #1

ACK #N

Frame # 1

Frame # n - N

Re-TX
Period

Frame #1

Frame #N

ACK #0

ACK
skipped n 

times

Frame # N
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Frame #1
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Figure 10: ARQ with ACK gap cycle (n 
 N) 

We have examined the impact of one ACK gap caused by a single data frame on the forward link because under 
light loading conditions where the inter-arrival time of the data frames are sufficiently large; in other words, 
1/�data_frame > max(n,N-1) * TNeed_ACK = max(n,N-1) * Npltu_ret/Rreturn. Since we know that n, the gap size in the ACK 
frames, is the greatest integer less than the ratio of the transmission time of the forward link data frame and the 
Need_ACK period, which is given by �Tdata_frame/TNeed_ACK�. Then the efficiency of the ARQ process, or �ARQ, when 
Tdata_frame > TNeed_ACK, is given by: 


 � _
_

_ _
_

_

1 max , 1

1 max , 1

pltu ret
ARQ data frame

return

pltu for return pltu ret
data frame

pltu ret forward return

N
n N

R

N R N
N

N R R

� �

�

� 	 � 	 �

� �� ��
� 	 � 	 �� �� �� ��� �� �� �

                             (5) 

Typically N is chosen to be the least number of return frames that will fill the round-trip time, which is �Tround-

trip/(Npltu_ret/Rreturn)�, The round trip time Tround-trip includes the two-way propagation time, transmission, coding, and 
processing delays of the data frame on the return link and ACK frame on the forward link. Substituting this into 
equation (5), we can compute the expected ARQ efficiency under light loading condition. 

_ _
_

_ _

1 max , 1pltu for return round trip return pltu ret
ARQ data frame

pltu ret forward pltu ret return

N R T R N
N R N R

� � 	
� �� � � �� �

� 	 � 	 �� �� � � �� ��� � � �� � � �� �
                         (6) 

4. General Recommendations under light loading conditions 
The jitter experienced by forward link frame is Tack under light loading conditions, which is a function of the 

forward link data rate. Because contention is actually low, the delay jitter will not be improved by giving 
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isochronous data frame higher access priority than the ACK frames since the worst case blocking occurs when the 
ACK already begins transmission, at which point the channel is already committed. 

As equation (5) indicates, the ARQ efficiency is driven by the round-trip time as well as the size transmission 
time of the forward link data frames. To minimize loss in ARQ efficiency, one can either: (a) increase the window 
size to N + n, where n is the maximum number of ACKs that could be skipped due to blocking by a forward link 
frame, to prevent pre-mature re-transmissions, or (b) reduce the forward link frame size so that Tdata_frame < TNeed_ACK;
this will eliminate the creation of ACK gaps. 

In general, under light loading conditions there is no need to modify the current prioritization scheme in the 
Proximity-1 specification. However, if the required jitter cannot be met by increasing forward link bandwidth, one 
may modify the current standard to include a weighted fair scheduler so that data frames will receive guaranteed 
bandwidth at the expense of creating ACK gaps. One can then mitigate the impact of the ACK gap by increasing the 
ARQ window size appropriately. 

C. Performance under high loading conditions 
High loading condition means that the offered load of the forward link data, �data is significant compare to 1 - 

�ack, which means that the contention between data and ACK frames become very intense and tend to correlated 
from one data frame to the next. The effect of this contention will create more channel blocking and higher jitter, 
which is detrimental to the isochronous traffic. To derive the upper bound on delay jitter, the worst case blocking by 
the ACK frames will be analyzed. The current Proximity-1 specification requires that only latest information should 
be sent in ARQ acknowledgement message. Therefore, when the ARQ state is updated, any buffered ACK frame 
waiting for transmission will be replaced by a new ACK frame. Because only the latest ACK frame is queued for 
transmission, long blockage due to ACK frame transmission normally does not occur. The only scenario in which a 
data frame could be blocked by multiple, consecutive ACK frames is when the ARQ state is updated while an ACK 
frame is being transmitted. Then at the end of the ACK frame transmission, the channel will not be released to the 
data frame but immediately used to send another updated ACK. This is the focus of our analysis here. 

Assuming that �ack < 1, the ARQ state will not change on top of an on-going ACK frame transmission unless the 
ACK frame being transmitted were delayed by a data frame. Two cases can be further distinguished and considered: 
(1) �ack < 1/2 and (2) 1 > �ack 
 1/2. 

1. Case 1: �ack < 1/2 
Figure 11 illustrates one such scenario. If an ACK frame is delayed sufficiently such that during its transmission 

time, the ARQ state changed again, then at the end of the ACK frame transmission, another ACK frame will follow 
immediately. Under high loading condition, we assume that the 2nd data frame could potentially arrive and move 
immediately to the head of the queue within the window of 2 * Tack. Then the 2nd data frame will not gain channel 
access until the end of the 2nd ACK frame transmission. Because �ack < 1/2, (or equivalently, TNeed_Ack > 2 * TAck)
there is no danger of having the second ACK frame blocking the third ACK frame. This means that number of 
consecutive ACK frames transmissions is upper-limited to two, thus the maximum delay jitter due to channel 
contention is 2 * Tack, doubling the bound under light loading condition. 

1st frame 
arrivals

Need_ACK Need_ACK

2nd frame 
arrival 

window

Need_ACK

Max jitter = 2*Tack

time
TNeed_Ack > 2Tack

1st frame 
arrivals

Need_ACK Need_ACK

2nd frame 
arrival 

window

Need_ACK

Max jitter = 2*Tack

time
TNeed_Ack > 2Tack

Figure 11: High Loading Condition with two consecutive ACK frames 
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When the loading of the data frame approach 1-�ack, significant queuing delay, as well as contention (blocking 
delay) will drive the latency and jitter performance and degrade the quality of service. However, in reality, when 
such situation occurs, most system will purposely allow data overflow to keep make sure that once the congestion is 
over, the newly arrived data frames are not queued behind outdated frames.  

2. Case 2: 1 > �ack 
 1/2 
It is also possible that a stream of k (>2) ACK frames may occur, when �ack is sufficiently high as shown in 

Figure 12. 

1st frame
arrivals

Need_ACK

2nd frame arrival 
window

Need_ACK

Max jitter = k*Tack

time
TNeed_Ack � 2Tack

Need_ACK

TNeed_Ack

TAck_Delay

1st frame
arrivals

Need_ACK

2nd frame arrival 
window

Need_ACK

Max jitter = k*Tack

time
TNeed_Ack � 2Tack

Need_ACK

TNeed_Ack

TAck_Delay

Figure 12: Channel Blocked by K Consecutive ACK Frames 

To compute the number of consecutive ACK frames that may occur, we define Tdef(i+1) as the delay experienced 
by the (i+1)th ACK frame, due to blocking by the i-th ACK frame. Note that by definition Tdef is always less than 
TNeed_Ack because only the latest ACK frame is buffered for transmission. Figure 13 shows the timing relationship. 

time

TNeed_Ack

Tdef(i)

ACK # i

Need_ACK Need_ACK

ACK # i+1

Tdef(i+1)

TACK

time

TNeed_Ack

Tdef(i)

ACK # i

Need_ACK Need_ACK

ACK # i+1

Tdef(i+1)

TACK

Figure 13: Tdef(i) Timing Diagram 

The iterative relationship between Tdef(i) is given by: 


 � 
 �_1def ACK Need Ack defT i T T T i� � 	 �                                                 (6) 

where Tdef(i) > 0. Note that since TAck < TNeed_Ack, Tdef(i) is always decreasing, and the burst length of the ACK 
frames is the largest index i such that Tdef(i+1) > 0, i.e., the number of consecutive frames, K, is given by 
�Tdef(1)/(TNeed_Ack - TACK)�. The maximum delay jitter occurs when Tdef(1) = TNeed_ACK :


 � 
 �� � _
max_ _0

_

1max 1 0, 1
1

Need ACK
jitter ACK def def Need ACK ACK ACKi

Need ACK ACK ACK

T
D T T i T T T T

T T ��

� � � �
� � � � � �� � � �	 	� � � �� �

    (7) 

This result also generalizes to the �Ack < 1/2 case. As �Ack � 1, the maximum jitter becomes unbounded, making 
the forward link unsuitable for isochronous traffic. In reality what may occur in this case is that the system will 
simply dropped buffered isochronous packets, thus limiting the latency for later packets and frames handled by 
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Proximity-1. This is analogous to suffering a temporary outage while conversing on the phone. When the outage 
ends, instead of hearing all the “missed” words/sentences again, the conversation simply resumes with a open 
channel, nothing is buffered, stored, or played back; all voice data during the outage were simply dropped. In our 
case, if a very long burst occurs, the system should similarly drop most of the data so that when the burst of ACK 
ends, what flows across the link are fresh isochronous traffic. 

3. Impact on ARQ Efficiency 
 The impact on ARQ efficiency on the reverse direction is similar to the light loading case. The driving factor is 
the transmission time of the data frame, if the data frame is sufficient large and will create ACK gaps, the window 
size of the ARQ algorithm should be adjusted accordingly. When the data frame is small, the jitter on ACK frame is 
bounded by TNeed_Ack, which can be easily compensated by increasing the window size by one. 

D. Contention with Sequence-controlled Frames 
 Although not the focus of our analysis, it is possible that there are expedited frames present on the forward link. 
The worse case latency experienced by an expedited frame occurs when an expedited frame arrives just after a 
sequence-controlled frame gains access to the channel, which is then followed by one or a burst of ACK frames. In 
general, this scenario increases the maximum jitter derived in our previous analysis by the transmission time of one 
data frame. A data frame could be larger than the ACK frame by two orders of magnitude, so the increase in jitter is 
potentially large. However, given the strict-priority assigned to the expedited frames, this additional latency stays 
constant regardless of the loading of the sequence-controlled traffic. The user can limit the jitter caused by 
sequence-controlled frame by keeping the data frame size on the forward link small when configuring the link. 

V. Additional Considerations 
 So far we have analyzed the maximum delay jitter for the aggregated isochronous traffic, as supported by the 
expedited Proximity-1 service. It is assumed that fine-grain prioritizations among multiple isochronous data streams 
generated by the various real-time applications were handled by the higher layers of the protocol stack. For example, 
the network and transport layers can control the order in which real-time packets from various applications were 
multiplexed serially into the Proximity-1 link layer interface. In this manner, the transport, network and link layers 
all have impact on the end-to-end latency and jitter. A modification to the current specifications is required to 
prioritize transmissions on a per application basis. 

As described in earlier section, the specification requires that whenever the channel is available for transmitting 
an acknowledgement frame, the latest ARQ state information should be reflected. In other words, the protocol 
should at any time instance buffer at most one ACK frame whose information content reflects the latest ARQ state. 
If while the ACK frame is waiting for transmission the ARQ state changed, then either the ACK frame buffered 
should be replaced with a new one. One can think of the ACK frame buffering mechanism as a last-in first-out 
queue that holds only one frame. However, given that most of the time the ACK frame loading is low, the need to 
replace an already buffered ACK frame is fairly small, this may result in implementations that actually maintains a 
small queue of ACK frames and increased jitter under the high loading scenarios, which is not analyzed in this study. 
 Queuing delay that occurs as a result of temporarily traffic fluctuation has not been considered here although it is 
clear that some buffering is needed at the network-link layer interface. Queuing delay is a strong function of the 
inter-arrival time distribution of the traffic, the capacity of the network, and variance of the service time. It is usually 
somewhat mitigated by the proper provisioning of system resources and implementation of flow/congestion control 
on the application and transport layers. For real-time traffic streams, it is preferred that isochronous packets/frames 
be dropped when there is congestion, outage, or long blocking, instead of buffering them for delayed transmission; 
therefore we do not address it in this analysis.  

Finally, it should be noted that this analysis did not assume any particular coding or physical layer 
implementation and therefore would apply if the Proximity-1 data link layer is applied on top of alternative coding 
or physical layer standards. 

VI. Recommendations and Conclusions 
 In this study, we analyzed the jitter performance of the CCSDS Proximity-1 Space Link protocol in the context 
of providing isochronous quality of service. We presented analysis of the maximum jitter of the protocol based on 
the current specification and showed that it is an inverse function of the residual bandwidth on the forward link, i.e., 
1-�Ack. The presence of sequence-controlled frames on the forward link will further increase the maximum jitter by 
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the transmission time of a sequence-controlled data frame, which can be limited by user configuration of the link. 
The impact of providing isochronous service on ARQ traffic on the return link can be minimized when the ARQ 
window size is properly configured. In this study we have assumed that the link layer operates over an aggregated 
stream of isochronous traffic and does not prioritize transmissions for individual isochronous applications flows, that 
functionality is assumed to be performed by higher layers of the protocol stack which has visibility to metadata 
associated with each isochronous data unit. 
 In general, it is not necessary to modify the current specification for isochronous services under light loading 
conditions. Voice-Over-IP (VoIP) streams require from 8 up to 64kbps throughput (depending on the codec 
selected), which should be easily supported by future radios with high forward link capacity. Current specification 
of the Proximity-1 protocol provide an Optional Control Field (OCF) in the frame structure which can piggy-back 
acknowledgement information in the data stream to reduce the loading of the acknowledge traffic as well. For 
scenarios where (1) the acknowledgement traffic is dominant on the forward link, (2) jitter requirement is tighter 
than the transmission time of an acknowledgement/data frame, or (3) prioritization of individual isochronous 
application flows is desired at the link layer, then alternative mechanisms that dynamically adjust the priority of 
each frame should be considered. 
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